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CHAPTER 1

Tutorial

Welcome! You are the head scheduler for the upcoming name con. You have a venue, you have talks and you have a
week to schedule everything!

Your venue has two rooms in which you will schedule talks and workshops in parallel but you’re also going to want
to find time for some social events.

You have organised your time slots as follows:

• The first day will have 2 sessions (morning and afternoon) with two 30 minute time slots in each room.

• The second day will have 1 room used for longer 1 hour workshops, the other room used for more talks and 2
long sessions set aside for the social events.

Installing the conference scheduler

The conference scheduler is compatible with Python 3.6+ only.

You can install the latest version of conference_scheduler from PyPI:

$ pip install conference_scheduler

If you want to, you can also install a development version from source:

$ git clone https://github.com/PyconUK/ConferenceScheduler
$ cd ConferenceScheduler
$ python setup.py develop

Inputting the data

Let us create these time slots using the conference_scheduler:
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>>> from conference_scheduler.resources import Slot, Event

>>> talk_slots = [Slot(venue='Big', starts_at='15-Sep-2016 09:30', duration=30,
→˓session="A", capacity=200),
... Slot(venue='Big', starts_at='15-Sep-2016 10:00', duration=30,
→˓session="A", capacity=200),
... Slot(venue='Small', starts_at='15-Sep-2016 09:30', duration=30,
→˓session="B", capacity=50),
... Slot(venue='Small', starts_at='15-Sep-2016 10:00', duration=30,
→˓session="B", capacity=50),
... Slot(venue='Big', starts_at='15-Sep-2016 12:30', duration=30,
→˓session="C", capacity=200),
... Slot(venue='Big', starts_at='15-Sep-2016 13:00', duration=30,
→˓session="C", capacity=200),
... Slot(venue='Small', starts_at='15-Sep-2016 12:30', duration=30,
→˓session="D", capacity=50),
... Slot(venue='Small', starts_at='15-Sep-2016 13:00', duration=30,
→˓session="D", capacity=50),
... Slot(venue='Big', starts_at='16-Sep-2016 09:30', duration=30,
→˓session="E", capacity=50),
... Slot(venue='Big', starts_at='16-Sep-2016 10:00', duration=30,
→˓session="E", capacity=50),
... Slot(venue='Big', starts_at='16-Sep-2016 12:30', duration=30,
→˓session="F", capacity=50),
... Slot(venue='Big', starts_at='16-Sep-2016 13:00', duration=30,
→˓session="F", capacity=50)]
>>> workshop_slots = [Slot(venue='Small', starts_at='16-Sep-2016 09:30', duration=60,
→˓session="G", capacity=50),
... Slot(venue='Small', starts_at='16-Sep-2016 13:00', duration=60,
→˓session="H", capacity=50)]
>>> outside_slots = [Slot(venue='Outside', starts_at='16-Sep-2016 12:30', duration=90,
→˓ session="I", capacity=1000),
... Slot(venue='Outside', starts_at='16-Sep-2016 13:00', duration=90,
→˓ session="J", capacity=1000)]
>>> slots = talk_slots + workshop_slots + outside_slots

Note that the starts_at format must be '%d-%b-%Y %H:%M' and that duration must be given in minutes.

We also have a number of talks and workshops to schedule, because of the duration/location of the slots we know
some of them are unavailable for a given slot:

>>> events = [Event(name='Talk 1', duration=30, tags=['beginner'],
→˓unavailability=outside_slots[:], demand=50),
... Event(name='Talk 2', duration=30, tags=['beginner'],
→˓unavailability=outside_slots[:], demand=130),
... Event(name='Talk 3', duration=30, tags=['beginner'],
→˓unavailability=outside_slots[:], demand=500),
... Event(name='Talk 4', duration=30, tags=['beginner'],
→˓unavailability=outside_slots[:], demand=30),
... Event(name='Talk 5', duration=30, tags=['intermediate'],
→˓unavailability=outside_slots[:], demand=60),
... Event(name='Talk 6', duration=30, tags=['intermediate'],
→˓unavailability=outside_slots[:], demand=30),
... Event(name='Talk 7', duration=30, tags=['intermediate', 'advanced'],
→˓unavailability=outside_slots[:], demand=60),
... Event(name='Talk 8', duration=30, tags=['intermediate', 'advanced'],
→˓unavailability=outside_slots[:], demand=60),
... Event(name='Talk 9', duration=30, tags=['advanced'],
→˓unavailability=outside_slots[:], demand=60),
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... Event(name='Talk 10', duration=30, tags=['advanced'],
→˓unavailability=outside_slots[:], demand=30),
... Event(name='Talk 11', duration=30, tags=['advanced'],
→˓unavailability=outside_slots[:], demand=30),
... Event(name='Talk 12', duration=30, tags=['advanced'],
→˓unavailability=outside_slots[:], demand=30),
... Event(name='Workshop 1', duration=60, tags=['testing'],
→˓unavailability=outside_slots[:], demand=300),
... Event(name='Workshop 2', duration=60, tags=['testing'],
→˓unavailability=outside_slots[:], demand=40),
... Event(name='City tour', duration=90, tags=[], unavailability=talk_
→˓slots[:] + workshop_slots[:], demand=100),
... Event(name='Boardgames', duration=90, tags=[], unavailability=talk_
→˓slots[:] + workshop_slots[:], demand=20)]

Further to this we have a couple of other constraints:

• The speaker for Talk 1 is also the person delivering Workshop 1:

>>> events[0].add_unavailability(events[6])

• Also, the person running Workshop 2 is the person hosting the Boardgames:

>>> events[13].add_unavailability(events[-1])

Note that we haven’t indicated the workshops cannot happen in the talk slots but this will automatically be taken care
of because of the duration of the workshops (60mins) and the duration of the talk slots (30mins).

Creating a schedule

Now that we have slots and events we can schedule our event:

>>> from conference_scheduler import scheduler
>>> schedule = scheduler.schedule(events, slots)

>>> schedule.sort(key=lambda item: item.slot.starts_at)
>>> for item in schedule:
... print(f"{item.event.name} at {item.slot.starts_at} in {item.slot.venue}")
Talk 3 at 15-Sep-2016 09:30 in Small
Talk 11 at 15-Sep-2016 09:30 in Big
Talk 4 at 15-Sep-2016 10:00 in Small
Talk 8 at 15-Sep-2016 10:00 in Big
Talk 1 at 15-Sep-2016 12:30 in Small
Talk 5 at 15-Sep-2016 12:30 in Big
Talk 2 at 15-Sep-2016 13:00 in Small
Talk 6 at 15-Sep-2016 13:00 in Big
Talk 9 at 16-Sep-2016 09:30 in Big
Workshop 2 at 16-Sep-2016 09:30 in Small
Talk 10 at 16-Sep-2016 10:00 in Big
Talk 7 at 16-Sep-2016 12:30 in Big
Boardgames at 16-Sep-2016 12:30 in Outside
Talk 12 at 16-Sep-2016 13:00 in Big
Workshop 1 at 16-Sep-2016 13:00 in Small
City tour at 16-Sep-2016 13:00 in Outside

1.3. Creating a schedule 5
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We see that all the events are scheduled in appropriate rooms (as indicated by the unavailability attribute for the
events). Also we have that Talk 1 doesn’t clash with Workshop 1. Similarly, the Boardgame does not clash
with Workshop 2.

You will also note that in any given session, talks share at least one tag. This is another constraint of the model; if
you find that your schedule has no solutions you can adjust it by re-categorising your talks (or giving them all a single
category).

Avoiding room overcrowding

The data we input in to the model included information about demand for a talk; this could be approximated from
previous popularity for a talk. However, the scheduler has put Talk 2 and Talk 3 (which have high demand) in the
small room (which has capacity 50). We can include an objective function in our scheduler to minimise the difference
between room capacity and demand:

>>> from conference_scheduler.lp_problem import objective_functions
>>> func = objective_functions.capacity_demand_difference
>>> schedule = scheduler.schedule(events, slots, objective_function=func)

>>> schedule.sort(key=lambda item: item.slot.starts_at)
>>> for item in schedule:
... print(f"{item.event.name} at {item.slot.starts_at} in {item.slot.venue}")
Talk 4 at 15-Sep-2016 09:30 in Big
Talk 7 at 15-Sep-2016 09:30 in Small
Talk 1 at 15-Sep-2016 10:00 in Big
Talk 6 at 15-Sep-2016 10:00 in Small
Talk 8 at 15-Sep-2016 12:30 in Big
Talk 12 at 15-Sep-2016 12:30 in Small
Talk 5 at 15-Sep-2016 13:00 in Big
Talk 10 at 15-Sep-2016 13:00 in Small
Talk 3 at 16-Sep-2016 09:30 in Big
Workshop 2 at 16-Sep-2016 09:30 in Small
Talk 2 at 16-Sep-2016 10:00 in Big
Talk 11 at 16-Sep-2016 12:30 in Big
Boardgames at 16-Sep-2016 12:30 in Outside
Talk 9 at 16-Sep-2016 13:00 in Big
Workshop 1 at 16-Sep-2016 13:00 in Small
City tour at 16-Sep-2016 13:00 in Outside

We see that those talks have moved to the bigger room but that all other constraints still hold.

Coping with new information

This is fantastic! Our schedule has now been published and everyone is excited about the conference. However, as can
often happen, one of the speakers now informs us of a particular new constraints. For example, the speaker for Talk
11 is unable to speak on the first day.

We can enter this new constraint:

>>> events[10].add_unavailability(*slots[9:])

We can now solve the problem one more time from scratch just as before:

6 Chapter 1. Tutorial



Conference Scheduler Documentation, Release ”

>>> alt_schedule = scheduler.schedule(events, slots, objective_function=func)

>>> alt_schedule.sort(key=lambda item: item.slot.starts_at)
>>> for item in alt_schedule:
... print(f"{item.event.name} at {item.slot.starts_at} in {item.slot.venue}")
Talk 1 at 15-Sep-2016 09:30 in Big
Talk 8 at 15-Sep-2016 09:30 in Small
Talk 4 at 15-Sep-2016 10:00 in Big
Talk 5 at 15-Sep-2016 10:00 in Small
Talk 3 at 15-Sep-2016 12:30 in Small
Talk 9 at 15-Sep-2016 12:30 in Big
Talk 2 at 15-Sep-2016 13:00 in Small
Talk 12 at 15-Sep-2016 13:00 in Big
Talk 11 at 16-Sep-2016 09:30 in Big
Workshop 2 at 16-Sep-2016 09:30 in Small
Talk 10 at 16-Sep-2016 10:00 in Big
Talk 6 at 16-Sep-2016 12:30 in Big
Boardgames at 16-Sep-2016 12:30 in Outside
Talk 7 at 16-Sep-2016 13:00 in Big
Workshop 1 at 16-Sep-2016 13:00 in Small
City tour at 16-Sep-2016 13:00 in Outside

This has resulted in a completely different schedule with a number of changes. We can however solve the problem
with a new objective function which is to minimise the changes from the old schedule:

>>> func = objective_functions.number_of_changes
>>> similar_schedule = scheduler.schedule(events, slots, objective_function=func,
→˓original_schedule=schedule)

>>> similar_schedule.sort(key=lambda item: item.slot.starts_at)
>>> for item in similar_schedule:
... print(f"{item.event.name} at {item.slot.starts_at} in {item.slot.venue}")
Talk 4 at 15-Sep-2016 09:30 in Big
Talk 7 at 15-Sep-2016 09:30 in Small
Talk 1 at 15-Sep-2016 10:00 in Big
Talk 6 at 15-Sep-2016 10:00 in Small
Talk 8 at 15-Sep-2016 12:30 in Big
Talk 11 at 15-Sep-2016 12:30 in Small
Talk 5 at 15-Sep-2016 13:00 in Big
Talk 10 at 15-Sep-2016 13:00 in Small
Talk 3 at 16-Sep-2016 09:30 in Big
Workshop 2 at 16-Sep-2016 09:30 in Small
Talk 2 at 16-Sep-2016 10:00 in Big
Talk 12 at 16-Sep-2016 12:30 in Big
Boardgames at 16-Sep-2016 12:30 in Outside
Talk 9 at 16-Sep-2016 13:00 in Big
Workshop 1 at 16-Sep-2016 13:00 in Small
City tour at 16-Sep-2016 13:00 in Outside

Spotting the Changes

It can be a little difficult to spot what has changed when we compute a new schedule and so there are two functions
which can help. Let’s take our alt_schedule and compare it with the original. Firstly, we can see which events
moved to different slots:

1.6. Spotting the Changes 7
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>>> event_diff = scheduler.event_schedule_difference(schedule, alt_schedule)
>>> for item in event_diff:
... print(f"{item.event.name} has moved from {item.old_slot.venue} at {item.old_
→˓slot.starts_at} to {item.new_slot.venue} at {item.new_slot.starts_at}")
Talk 1 has moved from Big at 15-Sep-2016 10:00 to Big at 15-Sep-2016 09:30
Talk 10 has moved from Small at 15-Sep-2016 13:00 to Big at 16-Sep-2016 10:00
Talk 11 has moved from Big at 16-Sep-2016 12:30 to Big at 16-Sep-2016 09:30
Talk 12 has moved from Small at 15-Sep-2016 12:30 to Big at 15-Sep-2016 13:00
Talk 2 has moved from Big at 16-Sep-2016 10:00 to Small at 15-Sep-2016 13:00
Talk 3 has moved from Big at 16-Sep-2016 09:30 to Small at 15-Sep-2016 12:30
Talk 4 has moved from Big at 15-Sep-2016 09:30 to Big at 15-Sep-2016 10:00
Talk 5 has moved from Big at 15-Sep-2016 13:00 to Small at 15-Sep-2016 10:00
Talk 6 has moved from Small at 15-Sep-2016 10:00 to Big at 16-Sep-2016 12:30
Talk 7 has moved from Small at 15-Sep-2016 09:30 to Big at 16-Sep-2016 13:00
Talk 8 has moved from Big at 15-Sep-2016 12:30 to Small at 15-Sep-2016 09:30
Talk 9 has moved from Big at 16-Sep-2016 13:00 to Big at 15-Sep-2016 12:30

We can also look at slots to see which now have a different event scheduled:

>>> slot_diff = scheduler.slot_schedule_difference(schedule, alt_schedule)
>>> for item in slot_diff:
... print(f"{item.slot.venue} at {item.slot.starts_at} will now host {item.new_
→˓event.name} rather than {item.old_event.name}" )
Big at 15-Sep-2016 09:30 will now host Talk 1 rather than Talk 4
Big at 15-Sep-2016 10:00 will now host Talk 4 rather than Talk 1
Big at 15-Sep-2016 12:30 will now host Talk 9 rather than Talk 8
Big at 15-Sep-2016 13:00 will now host Talk 12 rather than Talk 5
Big at 16-Sep-2016 09:30 will now host Talk 11 rather than Talk 3
Big at 16-Sep-2016 10:00 will now host Talk 10 rather than Talk 2
Big at 16-Sep-2016 12:30 will now host Talk 6 rather than Talk 11
Big at 16-Sep-2016 13:00 will now host Talk 7 rather than Talk 9
Small at 15-Sep-2016 09:30 will now host Talk 8 rather than Talk 7
Small at 15-Sep-2016 10:00 will now host Talk 5 rather than Talk 6
Small at 15-Sep-2016 12:30 will now host Talk 3 rather than Talk 12
Small at 15-Sep-2016 13:00 will now host Talk 2 rather than Talk 10

We can use this facility to show how using number_of_changes as our objective function resulted in far fewer
changes:

>>> event_diff = scheduler.event_schedule_difference(schedule, similar_schedule)
>>> for item in event_diff:
... print(f"{item.event.name} has moved from {item.old_slot.venue} at {item.old_
→˓slot.starts_at} to {item.new_slot.venue} at {item.new_slot.starts_at}")
Talk 11 has moved from Big at 16-Sep-2016 12:30 to Small at 15-Sep-2016 12:30
Talk 12 has moved from Small at 15-Sep-2016 12:30 to Big at 16-Sep-2016 12:30

Scheduling chairs

Once we have a schedule for our talks, workshops and social events, we have the last task which is to schedule chairs
for the talk sessions.

We have 6 different sessions of talks to chair:

Talk 4 at 15-Sep-2016 09:30 in Big
Talk 1 at 15-Sep-2016 10:00 in Big

8 Chapter 1. Tutorial
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Talk 7 at 15-Sep-2016 09:30 in Small
Talk 6 at 15-Sep-2016 10:00 in Small

Talk 8 at 15-Sep-2016 12:30 in Big
Talk 5 at 15-Sep-2016 13:00 in Big

Talk 11 at 15-Sep-2016 12:30 in Small
Talk 10 at 15-Sep-2016 13:00 in Small

Talk 3 at 16-Sep-2016 09:30 in Big
Talk 2 at 16-Sep-2016 10:00 in Big

Talk 12 at 16-Sep-2016 12:30 in Big
Talk 9 at 16-Sep-2016 13:00 in Big

We will use the conference scheduler, with these sessions corresponding to slots:

>>> chair_slots = [Slot(venue='Big', starts_at='15-Sep-2016 09:30', duration=60,
→˓session="A", capacity=200),
... Slot(venue='Small', starts_at='15-Sep-2016 09:30', duration=60,
→˓session="B", capacity=50),
... Slot(venue='Big', starts_at='15-Sep-2016 12:30', duration=60,
→˓session="C", capacity=200),
... Slot(venue='Small', starts_at='15-Sep-2016 12:30', duration=60,
→˓session="D", capacity=50),
... Slot(venue='Big', starts_at='16-Sep-2016 12:30', duration=60,
→˓session="E", capacity=200),
... Slot(venue='Small', starts_at='16-Sep-2016 12:30', duration=60,
→˓session="F", capacity=50)]

We will need 6 chairpersons for these slots and we will use events as chairs. In practice, all chairing will be taken care
of by 3 people, with each person chairing 2 sessions:

>>> events = [Event(name='Chair A-1', duration=60, demand=0),
... Event(name='Chair A-2', duration=60, demand=0),
... Event(name='Chair B-1', duration=60, demand=0),
... Event(name='Chair B-2', duration=60, demand=0),
... Event(name='Chair C-1', duration=60, demand=0),
... Event(name='Chair D-2', duration=60, demand=0)]

As you can see, we have set all unavailabilities to be empty however Chair A is in fact the speaker for Talk 11.
Also Chair B has informed us that they are not present on the first day. We can include these constraints:

>>> events[0].add_unavailability(chair_slots[4])
>>> events[1].add_unavailability(chair_slots[4])
>>> events[2].add_unavailability(*chair_slots[4:])
>>> events[3].add_unavailability(*chair_slots[4:])

Finally, each chair cannot chair more than one session at a time:

>>> events[0].add_unavailability(events[1])
>>> events[2].add_unavailability(events[3])
>>> events[4].add_unavailability(events[5])

Now let us get the chair schedule:

>>> chair_schedule = scheduler.schedule(events, chair_slots)

1.7. Scheduling chairs 9
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>>> chair_schedule.sort(key=lambda item: item.slot.starts_at)
>>> for item in chair_schedule:
... print(f"{item.event.name} chairing {item.slot.starts_at} in {item.slot.venue}
→˓")
Chair A-2 chairing 15-Sep-2016 09:30 in Big
Chair B-1 chairing 15-Sep-2016 09:30 in Small
Chair B-2 chairing 15-Sep-2016 12:30 in Small
Chair C-1 chairing 15-Sep-2016 12:30 in Big
Chair A-1 chairing 16-Sep-2016 12:30 in Small
Chair D-2 chairing 16-Sep-2016 12:30 in Big

Validating a schedule

It might of course be helpful to use the tool simply to check if a given schedule is correct: perhaps someone makes
a manual change and it is desirable to verify that this is still a valid schedule. Let us first check that our schedule
obtained from the algorithm is correct:

>>> from conference_scheduler.validator import is_valid_schedule, schedule_violations
>>> is_valid_schedule(chair_schedule, events=events, slots=chair_slots)
True

Let us modify our schedule so that it schedules an event twice:

>>> from conference_scheduler.resources import ScheduledItem
>>> chair_schedule[0] = ScheduledItem(event=events[2], slot=chair_slots[0])
>>> for item in chair_schedule[:2]:
... print(f"{item.event.name} chairing {item.slot.starts_at} in {item.slot.venue}
→˓")
Chair B-1 chairing 15-Sep-2016 09:30 in Big
Chair B-1 chairing 15-Sep-2016 09:30 in Small

We now see that we have an invalid schedule:

>>> is_valid_schedule(chair_schedule, events=events, slots=chair_slots)
False

We can furthermore identify which constraints were broken:

>>> for v in schedule_violations(chair_schedule, events=events, slots=chair_slots):
... print(v)
Event either not scheduled or scheduled multiple times - event: 1
Event either not scheduled or scheduled multiple times - event: 2

10 Chapter 1. Tutorial



CHAPTER 2

How To...

Define a Conference

Using PyCon UK 2016 for example data, let us consider how we might define a conference and pass the necessary
data to the scheduler.

The aim here is to show how we might use simple data structures and formats to hold the information we require and
then parse and process those structures into the necessary form for the scheduler.

We’ll use a variety of simple Python data types, YAML and JSON documents and we’ll include both inline data and
external files. This is simply by way of example and it’s likely that a real application would standardise on far fewer
of those options than are shown here.

Data Structures

Slots

In 2016, there were three types of event: talks, workshops and plenary sessions and these were held in five rooms at
Cardiff City Hall. Not all the rooms were suitable for all types of event.

We can capture this information using a Python list and dictionary:

>>> event_types = ['talk', 'workshop', 'plenary']

>>> venues = {
... 'Assembly Room': {'capacity': 500, 'suitable_for': ['talk', 'plenary']},
... 'Room A': {'capacity': 80, 'suitable_for': ['workshop']},
... 'Ferrier Hall': {'capacity': 200, 'suitable_for': ['talk']},
... 'Room C': {'capacity': 80, 'suitable_for': ['talk', 'workshop']},
... 'Room D': {'capacity': 100, 'suitable_for': ['talk']}}

The events took place over the course of five days in September but, for this example, we are not considering the first
day of the conference (Thursday) or the last (Monday). There were talks given on all three of those days (Friday to
Sunday) but the workshops only took place on the Sunday.

11
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Here is how we might represent this information using JSON:

>>> import json

>>> json_days = """{
... "16-Sep-2016": {"event_types": ["talk", "plenary"]},
... "17-Sep-2016": {"event_types": ["talk", "plenary"]},
... "18-Sep-2016": {"event_types": ["talk", "plenary", "workshop"]}}"""

The time periods available for the three event types were not the same and they were also grouped for talks but not for
the other two.

This time using YAML, here is how we might represent that information:

>>> yaml_session_times = """
... talk:
... morning:
... -
... starts_at: 10:15:00
... duration: 30
... -
... starts_at: 11:15:00
... duration: 45
... -
... starts_at: 12:00:00
... duration: 30
... afternoon:
... -
... starts_at: 12:30:00
... duration: 30
... -
... starts_at: 14:30:00
... duration: 30
... -
... starts_at: 15:00:00
... duration: 30
... -
... starts_at: 15:30:00
... duration: 30
... evening:
... -
... starts_at: 16:30:00
... duration: 30
... -
... starts_at: 17:00:00
... duration: 30
... workshop:
... None:
... -
... starts_at: 10:15:00
... duration: 90
... -
... starts_at: 11:15:00
... duration: 105
... -
... starts_at: 14:30:00
... duration: 90
... -
... starts_at: 16:30:00

12 Chapter 2. How To...
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... duration: 60

... plenary:

... None:

... -

... starts_at: 9:10:00

... duration: 50"""

Events

For the events which need to be scheduled, we have the talks that were accepted for PyCon UK 2016 in a YAML file

Unavailability

When organising any conference, it is common that speakers might be unavailable to attend on certain days or for
certain time periods.

Although we don’t have the real information from PyCon UK 2016, for this example, we can create some fictitious
data. Let’s say that Alex Chan was not available on either the Friday or the Sunday morning:

>>> yaml_speaker_unavailability = """
... Alex Chan:
... - unavailable_from: 2016-09-16 00:00:00
... unavailable_until: 2016-09-16 23:59:59
... - unavailable_from: 2016-09-18 00:00:00
... unavailable_until: 2016-09-18 12:00:00"""

It’s also common for speakers to request that their talk not be scheduled at the same time as somebody else’s that
they would like to attend. For example, in 2016, Owen Campbell asked that his talk not be scheduled opposite his
son’s, Thomas Campbell. Let’s also say that Owen wanted to attend David R. MacIver’s talk ‘Easy solutions to hard
problems’ (because he wanted to be inspired to create this library):

>>> yaml_speaker_clashes = """
... Owen Campbell:
... - Thomas Campbell
... - David R. MacIver"""

Loading into Python

Since we used a Python list and dictionary for the event types and venues, those are already available to us.

Next, we need to load the JSON and YAML data so that it too becomes available as lists and dictionaries. First,
let’s load the JSON document which holds the ‘days’ information. We’ll include a function to convert the strings
representing the dates into proper Python datetime objects.:

>>> import json
>>> from datetime import datetime
>>> from pprint import PrettyPrinter

>>> def date_decoder(day):
... for key in day.keys():
... try:
... new_key = datetime.strptime(key, '%d-%b-%Y')
... day[new_key] = day[key]
... del day[key]

2.1. Define a Conference 13
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... except:

... pass

... return day
>>>
>>> days = json.loads(json_days, object_hook=date_decoder)

>>> pp = PrettyPrinter()
>>> pp.pprint(days)
{datetime.datetime(2016, 9, 16, 0, 0): {'event_types': ['talk', 'plenary']},
datetime.datetime(2016, 9, 17, 0, 0): {'event_types': ['talk', 'plenary']},
datetime.datetime(2016, 9, 18, 0, 0): {'event_types': ['talk',

'plenary',
'workshop']}}

We can load the YAML document containing the ‘session times’ information in a similar fashion. Again, the data is
loaded into a Python dictionary with each event type as a key mapping to a further dictionary with the session name as
key and a list of slot times as its values. The start times are converted to an integer representing the number of seconds
since midnight:

>>> import yaml

>>> session_times = yaml.load(yaml_session_times)

>>> pp.pprint(session_times['workshop'])
{'None': [{'duration': 90, 'starts_at': 36900},

{'duration': 105, 'starts_at': 40500},
{'duration': 90, 'starts_at': 52200},
{'duration': 60, 'starts_at': 59400}]}

And also the file containing the talks:

>>> with open('docs/howto/pyconuk-2016-talks.yml', 'r') as file:
... talks = yaml.load(file)

>>> pp.pprint(talks[0:3])
[{'duration': 30,

'speaker': 'Kevin Keenoy',
'title': 'Transforming the government’s Digital Marketplace from portal to '

'platform'},
{'duration': 45,
'speaker': 'Tom Christie',
'title': 'Django REST framework: Schemas, Hypermedia & Client libraries.'},

{'duration': 30,
'speaker': 'Iacopo Spalletti',
'title': 'django CMS in the real time web: how to mix CMS, websockets, REST '

'for a fully real time experience'}]

Finally, the unavailability and clashes:

>>> speaker_unavailability = yaml.load(yaml_speaker_unavailability)

>>> pp.pprint(speaker_unavailability)
{'Alex Chan': [{'unavailable_from': datetime.datetime(2016, 9, 16, 0, 0),

'unavailable_until': datetime.datetime(2016, 9, 16, 23, 59, 59)},
{'unavailable_from': datetime.datetime(2016, 9, 18, 0, 0),
'unavailable_until': datetime.datetime(2016, 9, 18, 12, 0)}]}
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>>> speaker_clashes = yaml.load(yaml_speaker_clashes)

>>> pp.pprint(speaker_clashes)
{'Owen Campbell': ['Thomas Campbell', 'David R. MacIver']}

Processing

Before we can compute a schedule for our conference, we need to create the Event and Slot objects required by
the scheduler.

Slots

The nested structure we have used to define our session times is convenient and readable, but it’s not the structure
required by the scheduler. Instead, we need to flatten it so that we have the start time, duration and session name at the
same level. We’ll create a dictionary of these with the event type as a key as we’ll need each associated list separately
later on:

>>> slot_times = {
... event_type: [{
... 'starts_at': slot_time['starts_at'],
... 'duration': slot_time['duration'],
... 'session_name': session_name}
... for session_name, slot_times in session_times[event_type].items()
... for slot_time in slot_times]
... for event_type in event_types}

>>> pp.pprint(slot_times['workshop'])
[{'duration': 90, 'session_name': 'None', 'starts_at': 36900},
{'duration': 105, 'session_name': 'None', 'starts_at': 40500},
{'duration': 90, 'session_name': 'None', 'starts_at': 52200},
{'duration': 60, 'session_name': 'None', 'starts_at': 59400}]

Now, we can use that flattened structure to create instances of conference_scheduler.resources.Slot. A
Slot instance represents a time and a place into which an event can be scheduled. We’ll combine the slot_times
dictionary with the days list and the venues dictionary to give us all the possible combinations.

Again, we’ll create a dictionary of those with the event type as key because we’ll need each list of Slots separately
later on:

>>> import itertools as it
>>> from datetime import timedelta
>>> from conference_scheduler.resources import Slot

>>> slots = {
... event_type: [
... Slot(
... venue=venue,
... starts_at=day + timedelta(0, slot_time['starts_at']),
... duration=slot_time['duration'],
... session=f"{day.date()} {slot_time['session_name']}",
... capacity=venues[venue]['capacity'])
... for venue, day, slot_time in it.product(
... venues, days, slot_times[event_type])
... if (event_type in venues[venue]['suitable_for'] and
... event_type in days[day]['event_types'])]

2.1. Define a Conference 15
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... for event_type in event_types}

>>> pp.pprint(slots['talk'][0:5])
[Slot(venue='Assembly Room', starts_at=datetime.datetime(2016, 9, 16, 10, 15),
→˓duration=30, capacity=500, session='2016-09-16 morning'),
Slot(venue='Assembly Room', starts_at=datetime.datetime(2016, 9, 16, 11, 15),
→˓duration=45, capacity=500, session='2016-09-16 morning'),
Slot(venue='Assembly Room', starts_at=datetime.datetime(2016, 9, 16, 12, 0),
→˓duration=30, capacity=500, session='2016-09-16 morning'),
Slot(venue='Assembly Room', starts_at=datetime.datetime(2016, 9, 16, 12, 30),
→˓duration=30, capacity=500, session='2016-09-16 afternoon'),
Slot(venue='Assembly Room', starts_at=datetime.datetime(2016, 9, 16, 14, 30),
→˓duration=30, capacity=500, session='2016-09-16 afternoon')]

Events

We can now create instances of conference_scheduler.resources.Event using the talks dictionary we
loaded from the YAML file. Once again, we’ll create a dictionary with the event type as the keys:

>>> from conference_scheduler.resources import Event
>>>
>>> events = {'talk': [
... Event(
... talk['title'], talk['duration'], demand=None,
... tags=talk.get('tags', None))
... for talk in talks]}

>>> pp.pprint(events['talk'][0:3])
[Event(name='Transforming the government’s Digital Marketplace from portal to platform
→˓', duration=30, demand=None, tags=(), unavailability=()),
Event(name='Django REST framework: Schemas, Hypermedia & Client libraries.',
→˓duration=45, demand=None, tags=(), unavailability=()),
Event(name='django CMS in the real time web: how to mix CMS, websockets, REST for a
→˓fully real time experience', duration=30, demand=None, tags=(), unavailability=())]

We then need to add our unavailability information to those Event objects. It’s currently in a form based on the speaker
so that it’s easy to maintain but we need it based on the talks those speakers will give. We’ll create a dictionary with
the talk index as its key and a list of slots in which it must not be scheduled. (This will give us a dictionary with the
index of Alex Chan’s talk as the key mapping to a list of all slots on Friday and Sunday morning):

>>> talk_unavailability = {talks.index(talk): [
... slots['talk'].index(slot)
... for period in periods
... for slot in slots['talk']
... if period['unavailable_from'] <= slot.starts_at and
... period['unavailable_until'] >= slot.starts_at + timedelta(0, slot.duration *
→˓60)]
... for speaker, periods in speaker_unavailability.items()
... for talk in talks if talk['speaker'] == speaker}

>>> pp.pprint(talk_unavailability[55][0:3])
[0, 1, 2]

And then add those entries to our events dictionary:

16 Chapter 2. How To...



Conference Scheduler Documentation, Release ”

>>> for talk, unavailable_slots in talk_unavailability.items():
... events['talk'][talk].add_unavailability(*[slots['talk'][s] for s in
→˓unavailable_slots])

>>> pp.pprint(events['talk'][55].unavailability[0:3])
(Slot(venue='Assembly Room', starts_at=datetime.datetime(2016, 9, 16, 10, 15),
→˓duration=30, capacity=500, session='2016-09-16 morning'),
Slot(venue='Assembly Room', starts_at=datetime.datetime(2016, 9, 16, 11, 15),
→˓duration=45, capacity=500, session='2016-09-16 morning'),
Slot(venue='Assembly Room', starts_at=datetime.datetime(2016, 9, 16, 12, 0),
→˓duration=30, capacity=500, session='2016-09-16 morning'))

To complete our Event objects, we’ll need to add the information from our speaker_clashes dictionary to their
unavailability. First, let’s map the speaker entries in that dictionary to the relevant talks:

>>> talk_clashes = {talks.index(talk): [
... talks.index(t) for s in clashing_speakers
... for t in talks if t['speaker'] == s]
... for speaker, clashing_speakers in speaker_clashes.items()
... for talk in talks if talk['speaker'] == speaker}

>>> pp.pprint(talk_clashes)
{50: [19, 63]}

And now we can add those entries to our events dictionary:

>>> for talk, clashing_talks in talk_clashes.items():
... events['talk'][talk].add_unavailability(*[events['talk'][t] for t in clashing_
→˓talks])

>>> pp.pprint(events['talk'][50])
Event(name='Ancient Greek Philosophy, Medieval Mental Models and 21st Century
→˓Technology', duration=30, demand=None, tags=(), unavailability=(Event(name='Using
→˓Python for National Cipher Challenge', duration=30, demand=None, tags=(),
→˓unavailability=()), Event(name='Easy solutions to hard problems', duration=30,
→˓demand=None, tags=(), unavailability=())))

How to modify event tags and unavailabiity

As shown in Tutorial it is possible to add to the unavailability of an Event by using the Event.
add_unavailability method:

>>> from conference_scheduler.resources import Slot, Event
>>> from pprint import pprint

>>> slots = [Slot(venue='Big', starts_at='15-Sep-2016 09:30', duration=30, session="A
→˓", capacity=200),
... Slot(venue='Big', starts_at='15-Sep-2016 10:00', duration=30, session="A
→˓", capacity=200)]
>>> events = [Event(name='Talk 1', duration=30, demand=50),
... Event(name='Talk 2', duration=30, demand=130)]

Let us note the first event as unavailable for the first slot:

2.2. How to modify event tags and unavailabiity 17
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>>> events[0].add_unavailability(*slots)
>>> pprint(events[0].unavailability)
(Slot(venue='Big', starts_at='15-Sep-2016 09:30', duration=30, capacity=200, session=
→˓'A'),
Slot(venue='Big', starts_at='15-Sep-2016 10:00', duration=30, capacity=200, session=
→˓'A'))

We can remove a specific item:

>>> events[0].remove_unavailability(slots[0])
>>> events[0].unavailability
(Slot(venue='Big', starts_at='15-Sep-2016 10:00', duration=30, capacity=200, session=
→˓'A'),)

We can also completely clear the unavailability:

>>> events[0].clear_unavailability()
>>> events[0].unavailability
()

Similar methods exist for modifying event tags:

>>> events[0].add_tags('Python', 'Ruby', 'Javascript')
>>> events[0].tags
('Python', 'Ruby', 'Javascript')
>>> events[0].remove_tag("Python")
>>> events[0].tags
('Ruby', 'Javascript')
>>> events[0].clear_tags()
>>> events[0].tags
()

Use different solvers

The Pulp library is a Python interface to underlying solution engines. By default it comes packaged with CBC

It is however possible to use a number of other solvers (see the Pulp documentation for details) and these can be passed
to the scheduler. For example here is how we would use the GLPK solver for a given set of events and slots:

>>> scheduler.schedule(events=events, slots=slots, solver=pulp.GLPK())

Different solvers can have major impact on the performance of the scheduler. This can be an important consideration
when scheduling large or highly constrained problems.

How to obtain the mathematical representation of a schedule

When scheduling a conference, it might be desirable to recover the schedule in a different format. Let us schedule a
simple conference as described in Tutorial:

>>> from conference_scheduler.resources import Slot, Event
>>> from conference_scheduler import scheduler

>>> slots = [Slot(venue='Big', starts_at='15-Sep-2016 09:30', duration=30, session="A
→˓", capacity=200),
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... Slot(venue='Big', starts_at='15-Sep-2016 10:00', duration=30, session="A
→˓", capacity=200)]
>>> events = [Event(name='Talk 1', duration=30, demand=50),
... Event(name='Talk 2', duration=30, demand=130)]

>>> schedule = scheduler.schedule(events, slots)

We can view this schedule as before:

>>> for item in schedule:
... print(f"{item.event.name} at {item.slot.starts_at} in {item.slot.venue}")
Talk 1 at 15-Sep-2016 09:30 in Big
Talk 2 at 15-Sep-2016 10:00 in Big

If we want to recover the mathematical array form of our solution (as described in Mathematical model), we use the
scheduler.schedule_to_array function:

>>> array = scheduler.schedule_to_array(schedule, events=events, slots=slots)
>>> array
array([[ 1., 0.],

[ 0., 1.]])

We can also return from a mathematical array to the schedule using the scheduler.array_to_schedule func-
tion:

>>> for item in scheduler.array_to_schedule(array, events=events, slots=slots):
... print(f"{item.event.name} at {item.slot.starts_at} in {item.slot.venue}")
Talk 1 at 15-Sep-2016 09:30 in Big
Talk 2 at 15-Sep-2016 10:00 in Big

2.4. How to obtain the mathematical representation of a schedule 19
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CHAPTER 3

Background

Mathematical model

The scheduler works by solving a well understood mathematical problem called an integer linear program
[Dantzig1963], [Schaerf1999].

If we assume that we have 𝑀 events and 𝑁 slots, then the schedule is mathematically represented by a binary matrix
𝑋 ∈ {0, 1}𝑀×𝑁 . Every row corresponds to an event and every column to a slot:

𝑋𝑖𝑗 =

{︃
1, if event 𝑖 is scheduled in slot 𝑗
0, otherwise

(3.1)

From that we can build up various constraints on what is a valid schedule.

The constraints

All events must be scheduled

For every row (event), we sum over every column of 𝑋 and must have total sum 1.

𝑁∑︁
𝑗=1

𝑋𝑖𝑗 = 1 for all 1 ≤ 𝑖 ≤ 𝑀 (3.2)

All slots cannot have more than one event

For every column (slot), we sum over every row of 𝑋 and must have total sum at most 1.

𝑀∑︁
𝑖=1

𝑋𝑖𝑗 ≤ 1 for all 1 ≤ 𝑗 ≤ 𝑁 (3.3)

This in itself would give a basic schedule for a conference however things can be a bit more complicated:

21
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• Some slots can be in parallel with each other (for example because of multiple rooms);

• Slots and events might have different duration;

• It might be desirable to have some common thread for talks in a collections of slots (for example: the morning
session)

The mathematical representation for these constraints will be described below.

Events are only scheduled in slots for which they are available

There are multiple reasons for which an event might not be available in a given slot: perhaps the speaker is unavailable
on a given day.

These constraints can be captured using a matrix 𝐶𝑠 ∈ {0, 1}𝑀×𝑁 :

𝐶𝑠𝑖𝑗 =

{︃
1, if event 𝑖 is available in slot 𝑗
0, otherwise

(3.4)

This gives the following constraint:

𝑋𝑖𝑗 ≤ 𝐶𝑠𝑖𝑗 for all 1 ≤ 𝑖 ≤ 𝑀, 1 ≤ 𝑗 ≤ 𝑁 (3.5)

Two events are scheduled at the same time only if they are available to do so

Any two given events might not be able to occur concurrently: two events could be delivered by the same speaker, or
they could be about a similar topic.

This constraint is captured using a matrix 𝐶𝑒 ∈ {0, 1}𝑀×𝑀 :

𝐶𝑒𝑖𝑖′ =

{︃
1, if event 𝑖 is available during event 𝑖′

0, otherwise
(3.6)

Using this, we define the following set for every slot 𝑗:

𝑆𝑗 = {1 ≤ 𝑗′ ≤ 𝑁 | if 𝑗 and 𝑗′ are at the same time} (3.7)

Using this we have the following constraint:

𝑋𝑖𝑗 +𝑋𝑖′𝑗′ ≤ 1 + 𝐶𝑒𝑖𝑖′ for all 𝑗′ ∈ 𝑆𝑗 for all 1 ≤ 𝑗 ≤ 𝑁 for all 1 ≤ 𝑖, 𝑖′ ≤ 𝑀 (3.8)

We see that if 𝐶𝑒𝑖𝑖′ = 0 then at most one of the two events can be scheduled across the two slots 𝑗, 𝑗′.

Talks in a given session have something in common

It might be desirable to schedule collection of time slots in such a way that the events in that collection have something
in common. Perhaps all talks in a morning session in a particular room should be welcoming to delegates of a given
level of expertise.

To do this we first need to capture each collection of slots into sessions, and we define the following set for every slot
𝑗:

𝐾𝑗 = {1 ≤ 𝑗′ ≤ 𝑁 | if 𝑗 and 𝑗′ are in the same session} (3.9)

We also assume that we have a number of collections of events. Note that these collections are non disjoint: any
event can be in multiple collections. We refer to these collections as “tags”: an event can for example be tagged as
“beginner”.
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Using this we define the following set for every event 𝑖

𝑇𝑖 = {1 ≤ 𝑖′ ≤ 𝑀 | if 𝑖 and 𝑗 do not share a tag} (3.10)

This leads us to the following constraint:

𝑋𝑖𝑗 +𝑋𝑖′𝑗′ ≤ 1 for all 𝑗′ ∈ 𝐾𝑗 for all 1 ≤ 𝑗 ≤ 𝑁 for all 𝑖′ ∈ 𝑇𝑖 for all 1 ≤ 𝑖 ≤ 𝑀 (3.11)

Expressions (3.2), (3.3), (3.5), (3.8) and (3.11) define a valid schedule and can be used by themselves.

However, it might be desirable to also optimise a given objective function.

Objective functions

Optimising to avoid room overflow

Demand for events might be known: this will be captured using a vector 𝑑 ∈ R𝑀
≥0. Similarly capacity for rooms might

be known, captured using another vector 𝑐 ∈ R𝑁
≥0. Whilst it might not be possible to stick to those constraints strongly

(when dealing with parallel sessions delegates might not go where they originally intended) we can aim to minimise
the expected overflow given by the following expression:

𝑀∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝑋𝑖𝑗(𝑐𝑗 − 𝑑𝑖) (3.12)

Using this, our optimisation problem to give a desirable schedule is obtained by solving the following problem:

Minimise (3.12) subject to (3.2), (3.3), (3.5), (3.8) and (3.11).

Minimise change from a previous schedule

Once a schedule has been obtained and publicised to all delegates, a new constraint might arise (modifying (3.2), (3.3),
(3.5), (3.8) and (3.11)). At this point the original optimisation problem can be solved again leading to a potentially
completely different schedule. An alternative to this is to use distance from an original schedule 𝑋𝑜 as the objective
function. Norms on matrix spaces are usually non linear however, given the boolean nature of our variables, the
following function can be used to measure the number of changes:

𝑀∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝛿(𝑋𝑜𝑖𝑗 , 𝑋𝑖𝑗) (3.13)

where 𝛿 : {0, 1}2 → {0, 1} is given by:

𝛿(𝑥𝑜, 𝑥) =

{︃
𝑥, if 𝑥𝑜 = 0

1− 𝑥, if 𝑥𝑜 = 1
(3.14)

Using this it is possible to obtain a schedule that is least disruptive from another schedule when presented with new
constraints by solving the following problem:

Minimise (3.13) subject to (3.2), (3.3), (3.5), (3.8) and (3.11).
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CHAPTER 4

Indices and tables

• genindex

• modindex

• search
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